Responsible prescribing of antimicrobials

Prescriptions for change

David Tisdall
BVSc(hons) CertCHP GradDip FHEA MRCVS
Head of Department of Veterinary Clinical Sciences
Senior Teaching Fellow in Production Animal Medicine

With thanks to:
Andrea Turner, University of Bristol
Jenny Bellini, Friars Moor Veterinary Group

One Health: Antimicrobial and Anthelmintic Resistance
27th November 2019
Who am I?
Outline

» Antimicrobial stewardship & responsible use
 • What is it and who’s responsible?
 • What are the challenges?

» Understanding prescribing decisions
 • Why do we prescribe what we prescribe?

» ‘Best-practice’ prescribing
 • Principles & approach
 • Practice-wide
 • A commitment to change
Antimicrobial stewardship & responsible use
Antimicrobial stewardship

What does responsible medicines use mean to you?
Responsible medicines use

Views of undergraduate veterinary students

Evidence-based decision making

- “Avoiding blanket use without clinical indication”
- “Avoid prescribing for viral infections”
- “Use evidence to prescribe a suitable medicine and dose”
- “Respecting the cascade and using licensed medication as first line treatment”

Diligent prescribing & user compliance

- “Calculating the doses correctly”
- “Completing the course”
- “Good communication with owners about why you are doing what you are doing”
- “Don’t use broad-spectrum antibiotics because it is easier”

Moral duty & responsibility

- “Stewardship”
- “Using the correct medication … without being pressured or persuaded by owners or drug companies”
- “Only use when necessary”
- “Don’t prescribe just to make business”
Responsible use of antimicrobials in veterinary practice: The 7-point plan

1. **Work with clients to avoid need for antimicrobials**
 - Inform owners about the benefits of regular pet health checks
 - Use symptomatic relief or topical preparations where appropriate
 - Integrated disease control programmes
 - Animal Health and Welfare Planning
 - Isolate infected animals wherever possible

2. **Avoid inappropriate use**
 - For example, for uncomplicated viral infections
 - Restrict use to ill or at-risk animals
 - Advise clients on correct administration and storage of products and completion of course
 - Avoid underdosing

3. **Choose the right drug for the right bug**
 - Identify likely target organisms and predict their susceptibility
 - Create practice-based protocols for common infections based on clinical judgement and up to date knowledge
 - Know how antimicrobials work and their pharmacodynamic properties
 - Use narrow spectrum antimicrobials where possible

4. **Monitor antimicrobial sensitivity**
 - While clinical diagnosis is often the initial basis for treatment, bacterial culture and sensitivity must be determined whenever possible so that a change of treatment can be implemented if necessary
 - Monitor bacterial culture and sensitivity trends

5. **Minimise use**
 - Use only when necessary and evidence that usage reduces mortality and/or mortality
 - Regularly assess antimicrobial use and develop written protocols for appropriate use
 - Use alongside strict aseptic techniques and written practice guidelines

6. **Record and justify deviations from protocols**
 - Be able to justify your choice of antimicrobial and dose
 - Keep accurate records of treatment and outcome to help evaluate therapeutic regimens

7. **Report suspected treatment failure to the VMD**
 - This may be the first indication of resistance
 - Report through the Suspected Adverse Reaction Surveillance Scheme (SARRS)

Higher-risk antimicrobials
Fluoroquinolones, 3rd/4th generation cephapiclorins and colistin:
- Reserve these antimicrobials for clinical conditions that respond poorly to other classes of antimicrobials and where bacterial culture and sensitivity has been carried out
- Do not administer systematically to groups of more than 2 animals except in very specific situations and a special written treatment plan must be agreed to the risk of antibiotic resistance as part of the benefit/risk assessment
- Avoid off-label use whenever possible

Antimicrobials are essential for the treatment and prevention of the spread of infectious and cosmetic bacterial diseases in both animals and humans

For the latest detailed guidance visit www.bva.co.uk

https://www.bva.co.uk/uploadedFiles/Content/News,_campaigns_and_policies/Policies/Medicines/20170928%20BVA%20Antimicrob%20poster%202017%20v1%20WEB.pdf (accessed 05-11-2019)
Responsible medicines use

Antimicrobials are essential for the treatment and prevention of the spread of infectious and zoonotic bacterial diseases in both animals and humans.

Every use increases the risk of selection for resistant bacteria.

Responsible use optimises therapeutic effects while minimising the risk of selection for resistant bacteria.

Responsible use — correct antimicrobial: as little as possible, as much as necessary.

https://www.bva.co.uk/uploadedFiles/Content/News,_campaigns_and_policies/Policies/Medicines/20170928%20BVA%20Antimicrob%20poster%202017%20v1%20WEB.pdf (accessed 05-11-2019)
What makes an antimicrobial critically important for human medicine?

- Sole / limited number of substances available as therapy for serious human disease
- Pathogens which are zoonotic or where there exists the potential for resistance gene transfer from non-human sources
Responsible medicines use

Higher Priority CIAs

Higher-risk antimicrobials

Fluoroquinolones, 3rd/4th generation cephalosporins and colistin:

 Reserve these antimicrobials for clinical conditions that respond poorly to other classes of antimicrobials and where bacterial culture and sensitivity has been carried out

 Do not administer systemically to groups or flocks of animals except in very specific situations and special attention should be given to the risk of antimicrobial resistance as part of the benefit/risk assessment

 Avoid off-label use whenever possible

Quinolones are known to select for quinolone-resistant Salmonella spp. and E. coli in animals. At the same time, quinolones are one of few available therapies for serious Salmonella spp. and E. coli infections. Given the high incidence of human disease due to Salmonella spp. and E. coli, the absolute number of serious cases is substantial.

Cephalosporins (3rd and higher generation) are known to select for cephalosporin-resistant Salmonella spp. and E. coli in animals. At the same time, 3rd and higher generation cephalosporins are one of few available therapies for serious Salmonella spp. and E. coli infections in humans, particularly in children. Given the high incidence of human disease due to Salmonella spp. and E. coli, the absolute number of serious cases is substantial.

Macrolides and Ketolides are known to select for macrolide-resistant Campylobacter spp. in animals, especially Campylobacter jejuni in poultry. At the same time, macrolides are one of few available therapies for serious Campylobacter infections, particularly in children, for whom quinolones are not recommended for treatment. Given the high incidence of human disease due to Campylobacter spp., especially Campylobacter jejuni, the absolute number of serious cases is substantial.

Glycopeptides are known to select for glycopeptide-resistant Enterococcus spp. in food animals (e.g. when avoparcin was used as a growth promoter, vancomycin-resistant enterococci (VRE) developed in food animals and were transmitted to people). At the same time, glycopeptides are one of the few available therapies for serious enterococcal infections. Given the high number of cases, the previously documented occurrence of transmission of VRE to people from food animals, and the very serious consequences of treatment failures in such cases, glycopeptides are classified as being of the highest priority.

Polymyxins (e.g. colistin) are known to select for plasmid mediated polymyxin-resistant E. coli in food animals. At the same time, intravenous polymyxins are one of few available therapies for serious Enterobacteriaceae and Pseudomonas aeruginosa multi-resistant infections in people in healthcare settings in many countries, especially in seriously ill patients in critical care. Given the high incidence of human disease due to Enterobacteriaceae, the absolute number of serious cases where colistin is needed can be considered substantial.

Responsible medicines use

What are the challenges?

What are the challenges to achieving responsible medicines use on farm?
Responsible medicines use on farm

What are the challenges?

Ownership of responsibility
- Vets are the gatekeepers; farmers main users
- Prescription, dispensing & administration

Food chain protection
- MRLs and withhold times
- Zero milk withhold products

Evidence-based prescribing
- Motivation, knowledge and experience
- Empirical vs C&S
- Available evidence

Critically important AM use
- Availability
- Licensed “first-line” use
- Evidence base

User compliance
- Course completion
- Accurate dosing
- Medicines storage

Herd health management & husbandry
- Preventative medicine
- Farm environment
- Prophylaxis, metaphylaxis & group treatment

Economic factors
- Treatment Vs prevention
- Withhold periods
- Competition

Understanding prescribing decisions
Prescribing antibiotics featured in 35.1 – 48.5% of consultations

Antibacterial prescribing patterns in small animal veterinary practice identified via SAVSNET: the small animal veterinary surveillance network

In this study, data from veterinary clinical records were collected via the small animal veterinary surveillance network (SAVSNET). Over a three-month period, data were obtained from 22,859 consultations at 16 small animal practices in England and Wales: 69 per cent from dogs, 24 per cent from cats, 3 per cent from rabbits and 4 per cent from miscellaneous species. The proportion of consults where prescribing of antibacterials was identified was 35.1 per cent for dogs, 48.5 per cent for cats and 36.6 per cent for rabbits. Within this population, 76 per cent of antibacterials prescribed were β-lactams, including the most common group of clavulanic acid-potentiated amoxicillin making up 36 per cent of the antibacterials prescribed. Other classes included lincosamides (9 per cent), fluoroquinolones and quinolones (6 per cent) and nitroimidazoles (4 per cent). Vancomycin and teicoplanin (glycopeptide class), and imipenem and meropenem (β-lactam class) prescribing was not identified. Prescribing behaviour varied between practices. For dogs and cats, the proportion of consults associated with the prescription of antibacterials ranged from 0.26 to 0.55 and 0.41 to 0.73, respectively.

Why do we prescribe what we prescribe?

What questions do you ask yourself before deciding to prescribe an antibiotic?
What questions do you ask yourself before deciding to prescribe?
What influences our prescribing decisions?

Extrinsic Factors
- Practice culture
- Client Expectations
- Reputational risk
- Time pressure
- Economics

Clinical findings & patient factors
- Licensed use
- Prescribing cascade
- Withhold times

Intrinsic Factors
- Clinical experience
- Confidence
- Attitude to risk
- Discomfort with uncertainty
- Prescribing habits
- Values & beliefs

Shall I prescribe?
AMS: Behavioural drivers and barriers

» AM prescribing behaviour
 • Inappropriate, unnecessary or defensive

» Client interactions
 • Expectation and pressure
 • Insufficient time

» Practice culture

» Infection control practices

» Use of diagnostic tests

Expert consensus regarding drivers of antimicrobial stewardship in companion animal veterinary practice: a Delphi study

Kay Currie,1 Caroline King,1 Tim Nuttall,2 Matt Smith,1 Paul Flowers1

Abstract

Antimicrobial resistance (AMR) is a global challenge facing both human and animal healthcare professionals; an effective response to this threat requires a ‘One-Health’ approach to antimicrobial stewardship (AMS) to preserve important antibiotics for urgent clinical need. However, understanding of barriers and enablers to effective AMS behaviour in companion animal veterinary practice is currently limited. We conducted a Delphi study of 16 nationally recognised experts from UK-based veterinary policymakers, university academics and leaders of professional bodies. This Delphi study sought to identify veterinary behaviours which experts believe contribute to AMR and form vital aspects of AMS. Analysis of Delphi findings indicated a perceived hierarchy of behaviours, the most influential being antibiotic prescribing behaviours and interactions with clients. Other veterinary behaviours perceived as being important related to interactions with veterinary colleagues; infection control practices; and the use of diagnostic tests to confirm infection. Key barriers and enablers to AMS within each of these behavioural domains were identified. Specific interventions to address important barriers and enablers are recommended. To the authors’ knowledge, this is the first study to establish expert consensus at a national level about which ‘behaviours’ (aspects of veterinarian practice) should be targeted in relation to AMR and AMS in companion animal veterinary practice.

Individual GP prescribing behaviour had a greater influence on AM prescription than the clinical picture.
Patient characteristics had a limited effect on compliance.

Compliance varied with infection type (e.g., LRTIs > Sepsis).

Narrowing of AM spectrum in light of C&S was rare.

Defensive prescribing.

Perceived Tx efficacy prioritised over ↓ AMR risk.

Limited effect of patient and disease characteristics on compliance with hospital antimicrobial guidelines

Abstract Objective: Physicians frequently deviate from guidelines that promote prudent use of antimicrobials. We explored to what extent patient and disease characteristics were associated with compliance with guideline recommendations for three common infections. Methods: In a 1-year prospective observational study, 1,125 antimicrobial prescriptions were analysed for compliance with university hospital guidelines. Results: Compliance varied significantly between and within the groups of infections studied. Compliance was much higher for lower respiratory tract infections (LRTIs, 79%) than for sepsis (53%) and urinary tract infections (UTIs, 40%). Only predisposing illnesses and active malignancies were associated with more compliant prescribing; whereas alcohol/ intravenous drug abuse and serum creatinine levels >130 μmol/l were associated with less compliant prescribing. Availability of culture results had no impact on compliance with guidelines for sepsis but was associated with more compliance in UTIs and less in LRTIs. Narrowing initial broad-spectrum antimicrobial therapy to cultured pathogens was seldom practised. Most noncompliant prescribing concerned a too broad spectrum of activity when compared with guideline-recommended therapy. Conclusion: Patient characteristics had only a limited impact on compliant prescribing for a variety of reasons. Physicians seemed to practise defensive prescribing behaviour, favouring treatment success in current patients over loss of effectiveness due to resistance in future patients.

Keywords Guidelines · Antibiotic policy · Compliance · Drug therapy · Medical decision-making

Introduction

Targeting inappropriate antimicrobial use is an important feature of current infection control in hospital care [1]. Antimicrobial treatment guidelines have been developed that strongly promote prudent antimicrobial prescribing [2–51. At
Defensive prescribing

» Giving antimicrobials “just in case”

» Discomfort with uncertainty
 • Diagnosis & prognosis
 • Appropriate therapy & likely presence of AMR
 • Anticipated treatment efficacy, recovery time & client expectations
 • Managing internal / external pressures
Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries

Ilias Chantzarios1*, Filip Roeyn2, Bénédicte Collens3 and Jeroen Dewulf3

1Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Hard Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; 2Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium

*Corresponding author. Tel: +32-9-264-75-48; Fax: +32-9-264-75-34; E-mail: Ilias.chantzarios@ugent.be

Received 3 May 2013; returned 17 June 2013; revised 1 October 2013; accepted 14 October 2013

Objectives: To evaluate correlations between antimicrobial use and the prevalence of resistance in commensal Escherichia coli isolates from pigs, poultry and cattle, using data from publicly available national or international reports from seven European countries.

Methods: The link between the quantities of different classes of antimicrobials administered to food-producing animals per country (expressed in mg per population correction unit) and the prevalence of resistance to the different antimicrobial classes (interpreted by EUCAST epidemiological cut-off values) in E. coli isolates (4831 isolates in total) was assessed by means of polynomial regression analysis and determination of Spearman’s rank correlation coefficient.

Results: A quadratic regression best fitted the antimicrobial use and antimicrobial resistance data. The coefficient of determination was, in decreasing order, 0.99 for fluoroquinolones and amphenicols, 0.94 for third-generation cefalosporins and sulphonamides, 0.92 for ampicillin, 0.86 for fluoroquinolones, 0.83 for streptomycin and 0.80 for gentamicin and tetracycline. Spearman’s rank correlation coefficient was 1 for amphenicols, 0.96 for sulphonamides, 0.93 for streptomycin and tetracycline, 0.89 for ampicillin, 0.71 for gentamicin and 0.70 for third-generation cephalosporins.

Conclusions: These remarkably high coefficients indicate that, at a national level, the level of use of specific antimicrobials strongly correlates to the level of resistance towards these agents in commensal E. coli isolates in pigs, poultry and cattle. However, data restraints reveal the need for further detail in collection and harmonization of antimicrobial resistance and use data in Europe.

Spearman’s rank correlation coefficient between average antimicrobial use ranking (lowest=1 to highest=7) of country and average antimicrobial resistance ranking (lowest=1 to highest=7) of indicator Escherichia coli isolates for all antimicrobial agents tested except amphenicols (not all countries provided usage data), for food-producing animals. Each symbol represents the data from a single country. A linear trend line is shown.
“The mechanisms which lead to antimicrobial resistance are biological. However, the conditions promoting, or mitigating against, these biological mechanisms are profoundly social.”

Professor Dame Sally Macintyre, University of Glasgow
AMS: ‘Best-practice’ prescribing
Rank the following in terms of the importance of antimicrobial treatment as part of their management:

- Caesarean section
- Calf pneumonia
- Calf scour
- Digital dermatitis
- Interdigital necrobacillosis
- LDA Surgery
- Toxic mastitis
Suggested ranking...

Rank the following in terms of the importance of antimicrobial treatment as part of their management

1. Interdigital necrobacillosis
2. Calf pneumonia
3. Metritis
4. Caesarean section
5. LDA surgery
6. Digital dermatitis
7. Toxic mastitis
8. Sole Ulcer
9. Calf scour
Evidence-based prescribing

https://bestbetsforvets.org/
AMS: ‘Best-practice’ prescribing

General principles

- Preventative healthcare
- Use first-line treatments; Avoid HP-CIAs
- Make use of culture and susceptibility testing
- Prioritise therapeutic appropriateness over convenience / withhold times
- Early & appropriate treatment, delayed treatment & de-escalation
- Avoid group treatments (i.e. metaphylaxis & prophylaxis)
- Adopt a practice-wide approach
AMS: ‘Best-practice’ prescribing

Approach

1. What is the most likely diagnosis?
2. Is antimicrobial treatment indicated: will it improve the prognosis?
3. What are the likely bacteria?
4. Is AMR likely to be a factor?
5. What is the narrowest spectrum antimicrobial that is likely to be effective?
6. Other therapeutic considerations
Antimicrobial Stewardship
A practice-wide approach

Ceasing the use of the highest priority critically important antimicrobials does not adversely affect production, health or welfare parameters in dairy cows

Andrea Turner, David Tisdall, David C Barrett, Sarah Wood, Andrew Dowsey, Kristen K Reyher

Due to scientific, public and political concern regarding antimicrobial resistance (AMR), several EU countries have already taken steps to reduce antimicrobial (AM) usage in production animal medicine, particularly that of the highest priority critically important AMs (HP-CIAs). While veterinarians are aware of issues surrounding AMR, potential barriers to change such as concerns of reduced animal health, welfare or production may inhibit progress towards more responsible AM prescribing. Farmers from seven dairy farms in South West England engaged in changing AM use through an active process of education and herd health planning meetings. Prescribing data were collected from veterinary sales records; production and health data were accessed via milk recording and farm-recorded data. This study demonstrates that cattle health and welfare—as measured by production parameters, fertility, udder health and mobility data and culling rate—can be maintained and even improved alongside a complete cessation in the use of HP-CIAs as well as an overall reduction of AM use on dairy farms. This study also identified a need to consider different metrics when analysing AM use data, including dose-based metrics as well as those of total quantities to allow better representation of the direction and magnitude of changes in AM use.

Taking action

Major changes in AM use policy

Fluoroquinolone use stopped
- 1st line treatment approaches reinforced

Intramammary use
- 4th gen cephs substituted with penicillins and aminoglycoside combinations

Systemic use
- 3rd gen cephs substituted with 1st gen or aminopenicillins

Calf pneumonia
- Oxytetracycline or florfenicol, replace the longer-acting macrolides
Evaluate

Critically important antimicrobials

- 82% reduction in the total use of CIAs
- 91% reduction in systemic use of CIAs
- 100% reduction in intra-mammary use of CIAs
- No perceived or actual reduction in treatment outcomes or farm animal health
What do farmers’ think?

» Farm clients remain **consistently positive** about tackling the issues of responsible medicines use and AMR **in partnership**.

» Informal feedback suggests they found measures which express antimicrobial use in terms of doses, courses or economics most useful.
Conclusions

» Working in partnership works
 • Participatory & collaborative
 • Engaging the whole practice & farm team

» Monitoring use is an essential part of good antimicrobial stewardship
 • This must include treatment outcomes
 • Picking the right measures matters

» Medicines auditing goes hand in hand with improved HHM

» It is possible to achieve marked reductions in CIA use whilst…
 • Keeping farmers on board
 • Improving animal health and welfare

» The use of CIAs as first line treatments cannot be justified.
How will you commit to improving antimicrobial stewardship within your local context?
“Nobody made a greater mistake than he who did nothing because he could only do a little!”

Edmund Burke (1729 – 1797)
Further reading

Achieving responsible antimicrobial use: communicating with farmers

Kirsten K. Reyher, David C. Barrett, David A. Tiddal

Communicating with farmers is key to achieving responsible antimicrobial use on the farm. With the farmer and vet working together and understanding the farmer’s individual knowledge and expertise, the change in antimicrobial use can be sustained and work for both parties. This article discusses the factors that affect communicating with farmers and why there may be a difference in opinion between the vet and the farmer. It provides tools that clinics can use to improve their communication with the farmer to create a better working relationship.

Farmed Animals

Achieving responsible medicines use at practice and farm level

David A. Tiddal, Kirsten K. Reyher, David C. Barrett

Medicines use in farm animals and the potential for antimicrobial resistance development and transfer to humans is of increasing concern. Veterinary surgeons must take the lead in driving change; challenging the currently accepted norms of prescribing and administration. This article discusses the tendency towards therapeutic decision making, and monitoring patterns of medicines use to identify opportunities for intervention and measure impact, while at the same time part driving partnerships with farmers to improve herd health management. This article discusses how such a multifaceted, collaborative approach, which involves the whole practice team working in partnership with farm staff, can be highly successful in achieving and sustaining more responsible medicines use on farm and improving animal health.
Antimicrobial Stewardship in Veterinary Practice

How can good antimicrobial stewardship prevent antimicrobial resistance (AMR) in veterinary practices? Find out on this course.

https://www.futurelearn.com/courses/antimicrobial-stewardship-in-veterinary-practice
Any questions?